Q.P. Code: 16HS613

Time: 3 hours

Reg. No:						

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

MCA I Year I Semester Regular & Supplementary Examinations December 2017 PROBABILITY & STATISTICS

(Answer all Five Units **5 X 12 = 60** Marks)

UNIT-I

- 1 a Box A contains 5 red and 3 white marbles and box B contains 2 red and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of same colour.
 - b State and prove the Baye's Theorem.

OR

2 a <u>A random variable X has the following probability distribution function:</u>

_	<u> </u>					-					
	u	x	0	1	2	3	4	5	6	7	
		p(x)	0	K	2 <i>K</i>	2 <i>K</i>	3 <i>K</i>	K^2	$2K^2$	$7K^2 + K$	
		(i) Dete (<i>iii</i>) Va	rmine <i>K</i> riance.	(<i>ii</i>) if <i>P</i> ($X \leq K$) >	1/2, find	the minin	num va	lue of <i>K</i>		6M
	b	The pro	bability	density	function i	is $f(x) =$	$\begin{cases} k x e^{-\lambda x}, \\ 0, \end{cases}$	for $x \ge 0$ otherwis	$\lambda > 0$ e		6M
		Determ	ine (i) <i>k</i>	(ii) Mea	n	UNIT-I]				OW
3	а	Two die (i) at lea	ce are th ast once	rown fiv (ii) Two	e times. F times (iii	Find the partial field in $P(1 < 1)$	probability $X < 5$).	y of gett	ing 7 as s	um	6M
	b	Using r the mea	ecurrend in of Poi	ce formu sson dist	la find the tribution i	e probabi is 3.	lities whe	x = 0,	1, 2, 3, 4	and 5; if	6M
						OR					
4	а	In a sa deviatio (i)	mple of on is 2.5 how ma	f 1000 c Assum ny stude	cases, the ing the dints score	mean of stribution between	of a certa n to be no 12 and 15	in test ormal, fi 5 ?	is 14 an nd	d standard	
		(ii) (iii)	how ma	any stude	ents score	below 1	8 ?				6M
	b	Define	the Gam	ıma Disti	ribution a	nd derive	e its mean	and van	riance.		6M
5	а	Write a	bout wo	rking rul	e for test	ing of hy	pothesis.				5M
	b	Randor like to favor o in favor	n sample have a f f the pro c of the p	es of 400 lyover n posal. T proposal) men and ear their est the hy are same,	l 600 wo residence pothesis at 5% le	omen were e. 200 me that prop evel.	e asked en and 3 portions	whether t 325 wome of men a	hey would en were in nd women	7M
							-				

Max. Marks: 60

6M

6M

6 a The Blood pressure of 5 women before and after intake of certain drug are below:

5010 w.					
Before	110	120	125	132	125
After	120	118	125	136	121

Test whether there is significant change in Blood Pressure at 1% level of significance.

b The number of automobiles accidents per week in a certain community are as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period.

UNIT-IV

OR

7 Explain the meaning of ANOVA. Describe briefly the technique of ANOVA for one-way classification.

8 A former applies three types of fertilizers on 4 separate plots. The figure on yield per acre are tabulated below

Plots	YIELD								
Fertilizers	А	В	С	D					
Nitrogen	6	4	8	6					
Potash	7	6	6	9					
Phosphates	8	5	10	9					

Find out if the plots are materially different in fertility, as also, if three fertilizers make any material difference in yields.

UNIT-V

9 The following are the sample means and ranges for 10 samples each of size 5. Construct a \overline{X} - chart and a \overline{R} - chart and determine whether the process is in control.

Sample No.	1	2	3	4	5	6	7	8	9	10
Mean (\overline{X})	20	34	45	39	26	29	13	34	37	23
Range	23	39	15	05	20	17	21	11	40	10

OR

- 10 a A drilling machine bores holes with a mean diameter of 0.5230 cm and a standard deviation of 0.0032 cm. Calculate the 2-sigma and 3-sigma upper and lower control limits for means of samples 4, and prepare a control chart.
 - b The following are the figures of defectives in 22 lots each containing 2000 rubber belts: 425, 430, 216, 341, 225, 322, 280, 306, 337, 305, 356, 402, 216, 264, 126, 409, 193, 280, 326, 389, 451, 420. Draw control chart for fraction defective and comment on the state of control of the process.

*** END ***

7M

5M

12M

12M

6M

6M

12M